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"Anyone who thinks they are too small to make a difference has never tried to fall asleep with a 

mosquito in the room." 

 ~Christie Todd Whitman, Former New Jersey Governor and EPA Administrator 

 

"I have the attention span of a mosquito from multitasking and all the things that have affected 

my poor little brain." 

 ~Ian Somerhalder, American Actor and Model 
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ABSTRACT 

 Spinosad is a relatively new insecticide with a unique mode of action that is being 

evaluated for control of larval mosquitoes.  Whereas a number of toxicological studies have 

measured effects of spinosad on various mammals, fish, birds, and terrestrial arthropods, fewer 

studies have been conducted on the effects of spinosad on non-target aquatic insect species.  

Such studies are important as these species might be found in the same environments as 

mosquito larvae targeted for control. A neighborhood pond was surveyed to find a representative 

species of mosquito as well as other common aquatic insects with which to examine 

susceptibility to spinosad and non-target effects.  The mosquito species chosen was Culex 

quinquefasciatus and the most common non-target taxa were immature stages of a mayfly 

(Caenis spp., Ephemeroptera: Caenidae), a damselfly (Ischnura spp., Odonata: Coenagrionidae) 

and a dragonfly (Pachydiplax longipennis, Odonata: Libellulidae).  Bioassays of mosquitoes 

from a reference susceptible strain (Sebring-S) and field-collections of C. quinquefasciatus were 

used to determine susceptibility to spinosad.  In addition, susceptibility was examined in non-

target taxa using spinosad concentrations corresponding to the LC50 of a field-collected 

mosquitoes (0.031 ppm) and the labeled rate (1.6 ppm) of Natular
®

, an EC formulation of 

spinosad.  Susceptibility to spinosad did not differ between Sebring-S and field-collected 

mosquitoes.  However, there was a marked difference in susceptibility among non-target taxa.  

Susceptibility was greatest in Caenis spp., followed by Ischnura spp., then P. longipennis.  

Results from this study will allow better future management strategies for the use of spinosad as 

a mosquito larvicidal agent. 



  INTRODUCTION 

 Mosquitoes include some of the most economically and medically important insect 

species.  They are ubiquitous, and capable of carrying and transmitting a spectrum of animal and 

human diseases, often rapidly across entire continents (Snow et al., 1999; Roth et al., 2010; 

Weaver et al., 2010).  These diseases cause hundreds of millions of clinical cases and millions of 

deaths annually (Snow et al., 1999; Roth et al., 2010), and stunt both population and economic 

growth in entire regions (Utzinger et al., 2002; Killeen et al., 2004). For malaria alone, an 

estimated 225 million clinical cases of infection and 781,000 deaths occurred globally in 2009, 

and 655,000 deaths in 2010, most of these occurring in sub-Saharan Africa (WHO, 2010; 2011). 

 Mosquitoes in the genus Culex are vectors of a number of debilitating diseases in humans 

and animals.  Among them, the Southern house mosquito, Culex quinquefasciatus, is the most 

prevalent vector of urban and lymphatic filariasis in southern Asia and South America (Regis et 

al., 2000; Triteeraprapab et al., 2000), which infects over 100 million people worldwide (Myung 

et al., 1998; WHO, 2009), and is still endemic in at least 83 countries (WHO, 2009).  In addition, 

C. quinquefasciatus is one of several prevalent vectors in the C. pipiens complex of West Nile 

virus in North America, which was introduced in New York City in 1999 and spread rapidly to 

the west coasts of both the U.S. (Goldberg et al., 2010; Weaver & Reisen, 2010) and Canada 

(Roth et al., 2010).  As of 2011, approximately 25,000 clinical infections and over 1,200 deaths 

have been reported (Murray et al., 2010; CDC, 2011; 2012).  Whether or not C. quinquefasciatus 

is capable of transmitting dengue fever has also been debated.  However, previous studies 

suggest that, while it may be possible in lab settings, transmission is unlikely to occur in nature 

(Rosen et al., 1985; Huang et al., 1992; Vazeille-Falcoz et al., 1999).  Historically, C. 

quinquefasciatus has also been a major vector of St. Louis Encephalitis in Central and North 



America (Day, 2001), and may have been partially responsible for a sudden outbreak of the 

disease in the U.S. in 1975 with nearly 2,000 clinical cases (Creech, 1977; CDC, 2009).  Finally, 

Culex spp. is a nuisance mosquito and is a predominant target of urban mosquito abatement 

efforts. 

 Chemical insecticides are the cornerstone of efforts to manage populations of mosquitoes 

(Hemingway & Ranson, 2000).  Although chemicals have been used successfully as components 

of management strategies, insecticide susceptibility is best viewed as a limited resource 

(Hemingway & Ranson, 2000).  Thus, all insecticides, regardless of mode of action, will 

inevitably select for resistance in target species, and novel insecticides must be found to replace 

them.  In addition, unintentional damage to non-pest species that results from insecticide 

application (non-target effects) limits their utility.   

The insecticide, DDT, was among the first used to control arthropod vectors of human 

diseases, and was originally sprayed to combat malaria and typhus during World War II.  By the 

end of the war, DDT had been used to control mosquitoes that vector malarial pathogens after it 

had been proven effective in the European theater (CDC, 2010).  Largely through applications of 

DDT, incidence of malaria fell dramatically around the world, and malaria was considered 

eradicated from the continental U.S. by 1951 (CDC, 2010).  In addition, malarial infections were 

greatly reduced in other regions for the following decades, such as the Philippines (where 

incidences fell from 68% to as low as 6% in some populations) (Stapleton, 2004), and Ceylon 

(modern-day Sri Lanka), in which mortality fell from 1,180 cases per million to roughly 250 

cases per million from 1941 to 1950 (Gray, 1974). 

 Largely as a result of environmental contamination and insecticide resistance to DDT, 

other insecticides such as pyrethroids, carbamates, and organophosphates (OPs) were used for 



control of disease vectors (Gericke et al., 2002). Resistance to DDT in mosquitoes was first 

reported in 1947 in Anopheles taeniorhynchus in Florida after only four years of use in that 

region (Brown, 1986; Chareonviriyapap et al., 1999).  By 1960, over 130 different insect species 

had developed resistance to DDT (Stapleton, 2004), and by 1992, over 100 mosquito species 

showed resistance (WHO, 1992; Hemingway & Ranson, 2000).  The first reports of resistance to 

DDT in C. quinquefasciatus were along the African Coast (Cote d'Ivoire and Burkina Faso) 

(Adam et al., 1958 as cited in Chandre et al., 1997), and by 1977, DDT resistance was reported 

for most geographic regions (WHO, 1976; 1980).  In addition, by the 1970's, environmental 

contamination with DDT was widespread (Miskus et al., 1964; Cottam, 1965; Johnson et al., 

1971; Stapleton, 2004), at which time OP compounds became predominant insecticides for 

control of C. quinquefasciatus and other pest species (WHO, 1976; 1980).   

 The OPs were first developed in the 1930's by Dr. Gerhard Schrader of the Bayer 

Corporation in Germany, but they didn’t become available for use as insecticides until 1941 

(Busby & Eckstein, 2009).  Resistance to OPs in populations of C. quinquefasciatus were first 

reported in 1963 in western Africa (Chandre et al., 1997).  By 1977, there had been an increase 

in the numbers of reports of resistance to numerous OPs in C. quinquefasciatus throughout 

Africa and Asia (WHO, 1976; Chandre et al., 1997) and in regions of the U.S. (Georghiou et al., 

1975).  By 1987, OP resistance had become prevalent in most major geographic regions.  In 

addition, effects of OPs on non-targets became more recognized within this time, with special 

concern for its effects on birds (White, 1979; Stone et al., 1984; Hunt et al., 1991; Flieschli et al., 

2004) and fish (White, 1979; Khan & Law, 2005; Shoaib et al., 2012).  Within this time, OPs 

were replaced by pyrethroid insecticides, which then became widely used to manage medically 

important pests (WHO, 1980; 1986). 



 Pyrethroids are among the most successful classes of insecticidal chemicals.  These 

insecticides, which are synthetic analogs of natural insecticides (pyrethrins) produced in 

Chrysanthemum cinerariafolium, were pioneered by Michael Elliot of the Rothamsted 

Experimental Research Station throughout the 1960's and 70's (Housset & Dickman, 2009), and 

were used on mosquitoes and other medically important species throughout the 1980's (WHO, 

1980; 1986; 1992).  The first reported resistance to pyrethroids in C. quinquefasciatus resulted 

from artificial selection in a laboratory in 1978 (Priester & Georghiou, 1978), and then appeared 

in wild populations of these mosquitoes in West Africa in 1986 (WHO, 1986; Magnin et al. 

1988; Chandre et al., 1998).  Since that time, resistance has increased dramatically in these areas 

(WHO, 1980; 1986; 1992), with resistance reaching levels as high as 82-fold in populations of C. 

quinquefasciatus in Africa in the late 90’s (Chandre et al., 1998).  Further resistance has been 

reported in regions of Thailand and in the southern U.S. (Liu et al., 2004; 2009; Thanispong et 

al., 2008), with resistance to pyrethroids reaching as high as 1,400-fold in some cases (Liu et al., 

2009).  Despite widespread resistance to both OPs and pyrethroids, members from both classes 

of insecticides continue to be used for control of adult mosquitoes, largely because few effective 

alternatives are available. 

 Spinosad is a new insecticide that shows promise as a mosquito control agent.  It is an 

insecticide derived from Saccharopolyspora spinosa, an actinomycete discovered in an 

abandoned sugar rum mill in the Caribbean by a vacationing chemist in 1982 (Thompson et al., 

2000).  Four years later, scientists working for Eli Lilly (now a part of Dow Elanco) determined 

the insecticidal agent to be a mixture of fermentation products (spinosyns A and D) produced by 

S. spinosa  (Thompson et al., 2000). 



One of the promising attributes of spinosad is that its toxicity is mediated via a mode of 

action that differs from that of OPs and pyrethroids.  Insects ingesting spinosad experience 

paralysis caused by the rapid excitation of the nervous system through binding to the nicotinic 

acetylcholine and/or GABA receptors (Salgado, 1998).  This action usually causes death in 

arthropods within 48- to 78-hours after ingestion (Salgado et al., 1998; Thompson et al., 2000).  

In addition, the fact that it must be ingested increases its selectivity to phytophagous species, 

especially crop pests. 

In its fifteen years of use, resistance to spinosad has been limited in part because of its 

unique mode of action.  Thus, no cross-resistance to spinosad has been measured in mosquitoes 

that are resistant to pyrethroids or OPs (Darriet et al., 2005).  One notable exception was found in 

two field populations of the diamondback moth (Plutella xylostella) in Hawaii and Thailand that 

showed high (over 100-fold) resistance to spinosad (Zhao et al., 2002).  In addition, populations 

of the western flower thrips, Frankliniella occidentalis, collected in southeastern Spain, are up to 

46,000-fold resistant to spinosad (Bielza et al., 2007).  Finally, populations of the common house 

fly, Musca domestica, were selected in a laboratory with spinosad and developed >150-fold 

resistance within 10 generations (Shono & Scott, 2003).   

  Spinosad is highly toxic to a broad array of target pests.  This insecticide was first 

registered in 1997 for use against lepidopteran pests of cotton (Thompson et al., 2000; Legocki et 

al., 2010), and has since been registered for other lepidopteran pests on other crops, as well as 

pests in the Orders Diptera (such as fruit flies and mosquitoes), Thysanoptera, Isoptera and 

Coleoptera (Thompson et al., 2000; Legocki et al., 2010).  It is currently registered in over sixty 

countries and is applied to over 200 crop species, with 180 in the U.S. alone (Legocki et al., 

2010).  It is also toxic to some Orthoptera, Hymenoptera and Dermaptera (Legocki et al., 2010), 



and recently discovered effects against Phthiraptera and Siphonaptera has led to use of spinosad 

in veterinary medicine (Snyder et al., 2007; Legocki et al., 2010). 

The toxicity of spinosad to non-target organisms is relatively low. Spinosad is relatively 

non-toxic to mammals (LD50 > 5000 mg/kg), slightly toxic to birds, and slightly-to-moderately 

toxic to fish.  It is highly toxic to honeybees (0.5 ug/g) and parasitic Hymenoptera.  However, 

spinosad degrades rapidly, minimizing potential exposure (USEPA, 1999; Medina et al., 2008).  

In addition, spinosad has a favorable environmental profile: it is not known to leach, 

bioaccumulate, or volatilize (Thompson et al., 2000; West et al., 2000; Williams et al., 2003), 

and also has no known carcinogenic, teratogenic, or mutagenic effects on vertebrates (Legocki et 

al., 2010).  As a result of its limited non-target and chronic effects, in 1993, spinosad was labeled 

as a "reduced risk" compound by the EPA, and in 1999, Dow AgroSciences received the 

Presidential Green Chemistry Award for its development. 

Spinosad shows promise as a control agent for medically important species.  When 

mosquitoes began to develop resistance to the previous generation of insecticides, mosquito 

abatement and control agencies began to search for new insecticides with new modes of action 

(Darriet & Corbel, 2006; Perez et al., 2007).  Spinosad was first registered for use against 

mosquitoes in the U.S. in 2008 under the trade name Natular
®

 (Ravichandran, 2011).  Ironically, 

while it is only until recently that spinosad has been used against mosquitoes, its actual 

insecticidal properties were first detected in a mosquito bioassay in the 1980's (Thompson et al., 

2000; Bond et al., 2004).  The first primary applications for mosquitoes in the U.S. were against 

Aedes albopictus and Ae. aegypti alongside applications against other medically important pests 

(Legocki et al., 2010).  Currently, spinosad is being used (or evaluated for use) in mosquito 



control programs both in the U.S. and in a number of foreign countries (Liu et al., 2004; Darriet 

& Corbel, 2006; Perez et al., 2007; Legocki et al., 2010). 

Whereas toxic effects of spinosad on terrestrial arthropods and aquatic vertebrates (e.g., 

fish, reptiles, water fowl, mammals, etc.) have been well-documented (Eger Jr. et al., 1998; 

Thompson et al., 2000; Cisneros et al., 2002; Williams et al., 2003), its effects on non-target 

arthropods in aqueous environments have been less well studied (Dow AgroSciences, 1998, 

2002; Stark & Vargas, 2003; Bond et al., 2004; Duchet et al., 2008; Duchet et al., 2010a, 2010b).  

The potential effects of insecticides on non-targets in aquatic environments can vary widely due 

to a large number of factors.  More predictable effects can include mortality due to insecticide 

sites of action co-occurring across target (i.e., pest) and non-target species.  For example, 

pyrethroids affect the voltage-sensitive Na+ channels in both insects and mammalian species 

(Wolansky & Harrill, 2008).  In addition, juvenile hormone mimics, such as S-methoprene affect 

development in crustaceans as well as in insects (Mortimer & Chapman, 1995; Verslycke et al., 

2007).   

In addition, there are also less predictable effects that can occur in non-targets upon 

insecticide exposure.  A noteworthy case is exposure of frogs in Minnesota to S-methoprene, 

which affected early development and caused growth of additional appendages and malformed 

limbs (Cohen, Jr., 2001; Degitz et al., 2003).  More recently, neonicotinoid insecticides have 

been implicated as causal agents in extreme reductions in honey bee and bumble bee populations 

(Yang et al., 2008; Marzaro et al., 2011; Whitehorn et al., 2012).  The difficulty in predicting 

such non-target effects can be further exacerbated by physical differences (e.g., pH, salinity, 

temperature, UV exposure, absence or presence of sediments or organic material) between 

aquatic and terrestrial environments that may affect toxicity and persistence of insecticides in the 



environment (Maund et al., 2002; Nevskaia et al., 2004).  In addition, fundamental biological 

processes (e.g., osmoregulation) differ between terrestrial and aquatic species (Siegfried, 1993).  

Finally, ecological effects, such as bio-accumulation within food webs, are difficult to predict.  

For example, exposure to DDT applied to Clear Lake, CA at approximately 0.02 ppm to control 

gnats, in 1949, 1954, and 1957 led to a dramatic decrease in populations of the western grebe.  A 

local population of 1000 breeding pairs failed to produce a single hatchling until 1962 due to 

DDT poisoning from contaminated fish and other prey (Boellstorff et al., 1985; Cottam, 1965).  

Tests later showed that plankton (taxa not named) had bioaccumulated up to 5.3 ppm DDT (a 

265-fold increase over the maximum amount applied), and the visceral fat of frogs and carp were 

found to have between 5 to 40 ppm (a 2000-fold increase) (Cottam, 1965).  Up to 1,600 ppm 

DDT were found in some grebes (an 80,000-fold increase), and concentrations were even higher 

in some species of fish (such as bullheads), in which some specimens had up to 2,700 ppm DDT 

in their tissue, an increase of 135,000-fold (Cottam, 1965). 

Often, potential non-target effects may be detected using a representative resident (i.e., a 

bioindicator) of a given environment.  For example, many studies have used a wide variety of 

odonates (i.e., dragonflies and damselflies) as bioindicators of heavy metal contamination 

because of their tendency to sequester toxins that cause a variety of physiological effects., 

including cadmium, cobalt-60, fluorides and lead (Wixson & Clark, 1967; Murihead-Thompson, 

1971; Dewey, 1973; Mathis et al., 1977; Meyer et al., 1986; Westfall Jr. & May, 1996; Needham 

et al., 2000).  The most common sublethal effects, which might be observed in response to a 

large variety of pollutants, include abnormalities in body size and weight (Palli & Markobatova, 

1963 as cited in Westfall Jr. & May, 1996), changes in molting frequency and other 

developmental effects (Rupperecht, 1975, Mielewczyk, 1977, Subramanian & Varadaraj, 1993; 



Westfall Jr., & May, 1996).  In addition, toxicological responses of mayflies (order 

Ephemeroptera) have been studied extensively.  In general, most ephemeropterans are sensitive 

indicators of polluted waters, especially poorly oxygenated environments (Deepa, 2012; 

Menetrey, 2008).  Their fecundity is especially dependent on environmental conditions (Soldan, 

1981, as cited by Landa & Soldan, 1995), and because of the short duration of the adult stage, 

mobility in populations is low.  As such, larval Ephemeroptera are often considered to be 

accurate indicators of conditions in local environments (Sweeney & Funk, 1991, as cited by 

Landa & Soldan, 1995), and are used as key bioindicators (Deepa, 2012; Fialkowski et al., 2003; 

Landa & Soldan, 1995; Menetrey et al., 2008) or components of models used to assess the 

overall health of the ecosystem (Deepa, 2012).  Previous studies with insecticides and mayflies 

have shown mortality and reduced growth in the wild caused by exposure to OPs and 

carbamates, as well as fungicides (Hatakeyama et al., 1997; Peterson et al., 2001).  Furthermore, 

other studies have demonstrated non-lethal effects, such as disruption in osmoregulation 

(pyrethroids) (Tang & Siegfried, 1995), drifting of populations downstream (rotenone), and the 

possible migration of entire populations away from sites exposed to insecticides (rotenone) 

(Arnekleiv et al., 2001). 

Whereas research on aquatic invertebrates has been limited, spinosad has been shown to 

be toxic to a number of aquatic species, such as water fleas, oysters, and grass shrimp (Dow 

AgroSciences, 1998, 2002; Thompson et al., 2000; Bond et al., 2004; Duchet et al., 2008, Duchet 

et al., 2010a, 2010b). Given physical and biological differences between terrestrial and aquatic 

environments, and the fact that the active components of spinosad are somewhat water-soluble 

(235 ppm and 0.332 ppm for spinosyns A and D, respectively, at 25°C, pH 7), the environmental 



and toxicological profiles of spinosad could conceivably differ between these two environments.  

This has not received extensive study. 

The objective of my research was to evaluate the efficacy of spinosad against target and 

non-target species.  The toxicity of spinosad against a target species (larval C. quinquefasciatus) 

was determined with a static bioassay and mosquitoes from a reference susceptible strain and 

field collections.  As part of the objective, I surveyed the collection site throughout several 

seasons to identify and catalogue potential non-target species.  Finally, I evaluated the toxicity of 

spinosad against representative non-target species.  Results from this study will allow for safer 

use of spinosad in mosquito control program
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MATERIALS AND METHODS 

Chemicals 

 Spinosad (a mixture of 50–95% (2R,3aS,5aR,5bS,9S,13S,14R,16aS,16bR)-2-(6-deoxy-

2,3,4-tri-O-methyl- -L-mannopyranosyloxy)-13-(4-dimethylamino-2,3,4,6-tetradeoxy- -D-

erythropyranosyloxy)-9-ethyl-2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,16a, 16b-hexadecahydro-14-

methyl-1H-as-indaceno[3,2-d]oxacyclododecine-7,15-dione 

and 5–50% (2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-2-(6-deoxy-2,3,4-tri-O-methyl- -L-

mannopyranosyloxy)-13-(4-dimethylamino-2,3,4,6-tetradeoxy- -D-erythropyranosyloxy)-9-

ethyl-2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-hexadecahydro-4,14-dimethyl-1H-as-

indaceno[3,2-d]oxacyclododecine-7,15-dione) (Natular® EC Formulation) was provided by East 

Baton Rouge Mosquito and Rodent Control (EBRMARC).  A stock solution (10 ppm) was 

prepared using double-distilled water (ddH2O) and an amber bottle, and stored at room 

temperature until use. 

Field Site 

 Wild populations of mosquitoes were collected for study at a field site located at Eliza 

Beaumont Lane, Baton Rouge, LA. (30°25'39.91"N, 91°9'15.43"W).   The site is a small pond 

(Fig. 1-3) aerated by a fountain (Fig. 4) and located in an isolated residential area.  It is 

surrounded and partially covered by oak trees, and has a bridge running to a small island in the 

center of the pond.  The shoreline is populated with emergent vegetation and the benthos is 

composed of mud that is covered in areas by dead leaves from trees overlooking the pond.  The 

depth varies depending on distance from the shoreline, but does not exceed five feet. 

 



Fig. 1: Survey site at Eliza Beaumont Ln. 

 

 
Fig. 2: View of the emergent vegetation on the shoreline of the survey site. 

 



Fig. 3: Additional shoreline of the survey site, partially showing the benthos at the shoreline. 

 

 
Fig. 4: View of the fountain used to aerate the pond water. 



Survey of Mosquito Species 

 Mosquito species at the field site were surveyed using miniature CDC blacklight/CO2 

traps (Sudia & Chamberlain, 1962), which used a single fan powered by a 6-volt electric motor 

and a single 4-watt fluorescent F4T5 black-light bulb in each.  The traps used CO2 (in the form 

of dry ice) and a black light as attractants, and were set up and left overnight.  The following 

mornings, captured mosquitoes were transported in collection cups, placed in a freezer at the 

LSU Entomology Mosquito Research Laboratory for 24 hours, and then transported to 

EBRMARC using a styrofoam cooler loaded with ice.  All mosquitoes were identified with 

assistance from personnel at EBRMARC. Collection dates were June, 8th, 12th, 16th and 22nd, 

2011.  Voucher specimens were not retrieved because the freezer in which the specimens were 

contained in at EBRMARC were destroyed when the freezer failed. 

Survey of Insect Species 

 Field populations of C. quinquefasciatus were obtained from the field site using 

oviposition traps baited with fish emulsion (Alaska Brand Fish Fertilizer, 5-1-1 ratio; 0.14L/Gal 

water) as an attractant (R. Vaeth, personal communication, 2011).  Egg rafts were collected using 

a section of small wire mesh (0.125 mm aperture) and transported to the LSU Entomology 

Mosquito Research Lab.  Larvae were reared in metal pans filled with double-distilled water 

(ddH2O) and fed liver powder (provided by MP Biomedicals, LLC., Santa Ana, CA.) until they 

reached the 3
rd

 instar, at which point they were moved into the mosquito bioassays. 

 Non-target insects were collected from the study site using a D-frame aquatic sweep net 

(1.2 mm aperture), a plastic mosquito dip (max volume 350 ml), or a minnow-sieve (1.5 mm 

aperture).  Insects were collected continuously between the times of 9:00 am and 1:30 pm and 



were then transported in specimen cups of pond water back to the LSU Entomology Mosquito 

Research Lab where they were preserved in 90% ethyl alcohol and classified to family and, if 

possible, genus and species, using a dichotomous key.  Specimens along with pond water were 

then passed through a series of sieves (No. 50, 120, and 270 aperture sizes, or 0.297mm, 

0.125mm, and 0.053mm, respectively).  The three most abundant non-target species were then 

used for the non-target bioassays (described below).  Collection dates in 2011 were: May 24th, 

27th, 30th, June 1st and 3rd, 7th, 9th and 22nd, November 5th, and December 7th.  During 2012, 

collections were made on: February 6th, March 5th, May 19th, May 21st, June 27th, and July 

18th.  Voucher specimens were turned into the Louisiana State University Arthropod Museum. 

Reference Susceptible Strain 

 A reference, susceptible strain of C. quinquefasciatus (SEBRING-S) was obtained from 

Mosquito Abatement in Harris Country, Texas.  The United States Department of Agriculture 

Agricultural Research Station in Gainesville, FL originally founded the colony from mosquitoes 

collected in 1988 in Sebring, FL (Sbrana et al., 2005; Johnsen, 2007). 

Bioassays 

 Susceptibilities of mosquito larvae and non-targets were determined using a static system 

and aqueous solutions of spinosad in Pyrex® petri dishes (No. 3140-100; 100mm x 50mm).  

Prior to assays, dishes were washed with soap and water, then rinsed with 0.1 M NaOH, rinsed 

again with water, followed by bulk acetone, rinsed with water again, and then baked in a lab 

oven at 180°F for 24 hours.  A stock solution of spinosad (10 ppm) was prepared by dilution 

with ddH2O, and stored in the dark at room temperature until use.  It was then diluted further to 

create a 0.1 ppm working solution that was diluted immediately prior to use in bioassays.  



Twenty, 3rd instar mosquito larvae from field collections or the reference SEBRING-S strain 

were introduced into Pyrex® dishes containing 100 mL of insecticide using a small section of 

wire mesh, and containers were placed in an incubator at a constant temperature (27°C) and 

photoperiod (14:10-hour L:D).  Dishes containing mosquitoes and 100 mL ddH2O were used as 

the control.  Mortality was monitored at 72 hours after initial exposure, and was defined as lack 

of movement in response to continued probing.  Mortality was determined at least three times 

using different collections of mosquitoes for each determination. 

 Low numbers of non-target species precluded determination of LC50 concentrations.  

Instead, the insects were exposed to two concentrations of spinosad: 0.031 ppm, which is the 

LC50 calculated in this study for field-collected mosquitoes, and 1.6 ppm, which is the published 

field rate for Natular
®

.  Non-target species were used in bioassays on the same day they were 

collected from the site, and assays were conducted and data assessed similarly to the mosquito 

bioassays.  The three taxa chosen as representative non-target organisms, based on their 

abundance at the collection site, were ultimate or penultimate instars of Caenis spp. 

(Ephemeroptera: Caenidae), Ischnura spp. (Odonata: Coenagrionidae), and Pachydiplax 

longipennis (Odonata: Libellulidae).  For tests with Caenis spp., each determination consisted of 

25 naiads divided into 5 dishes: four containing spinosad (at either 0.031 or 1.6 ppm) and one 

containing ddH2O only (control).  Susceptibility to each concentration was determined 5 times 

using naiads collected on different days.  For assays with Ischnura spp. and P. longipennis one 

naiad was used per dish, due to known aggressive and cannibalistic behavior among naiads of 

Ischnura spp. and P. longipennis, respectively.  Susceptibility to the two concentrations of 

spinosad was determined 3 times with each determination consisting of 5 controls and 5 

treatments. 



Statistics 

 Results from biological assays were corrected for control mortality (which never 

exceeded 10%) using Abbott's formula (Abbott, 1925), then subjected to probit analysis (Finney, 

1952).  Statistical differences between LC50 values were determined based on overlapping of 

95% confidence intervals.
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RESULTS 

Survey of Mosquito Species 

 A total of 72 adult mosquitoes representing 12 species within 6 genera were collected 

from the study site (Table 1).  The most abundant genus, in terms of individuals collected, was 

Culex, with 44 individuals.  The most common species was C. erraticus (37 individuals), 

followed by C. quinquefasciatus (10 individuals).  Anopheles quadrimaculatus was also present, 

with 9 individuals total, as well as four different species of Aedes, including Ae. albopictus and 

Ae. vexans, and a single Ae. aegypti and Ae. triseriatus.  Several members of Psorophora ferox 

and Uranotaenia sappharina were also collected, as well as a single Coquilettidia peturbans. 

Survey of Non-Target Taxa 

 Members of 14 families of insects from 5 orders were collected during a survey of the 

study site (Table 2).  The three taxa with the highest overall abundance were naiads of Ischnura 

spp. (Odonata: Coenagrionidae; 38 individuals), Pachydiplax longipennis (Odonata: 

Libellulidae; 28 individuals) and Caenis spp. (Ephemeroptera: Caenidae; 29 individuals).  These 

were then used as representative taxa in the non-target bioassays.  In terms of diversity, 

Coleoptera were represented by the most families (5), including the genera Peltodytes and Stenus 

within the families Haliplidae and Staphylinidae, respectively, as well as members of families 

Scirtidae, Dytiscidae and Hydrophilidae.  The order Diptera was represented predominantly by 

the family Chironomidae, and two individuals identified as either Odontomyia or Hedriodiscus 

(both in the family Stratiomyidae).  Six individuals from different taxa in the order Hemiptera 

were also collected at different times of the year.  

 

 



Table 1: Identities of adult mosquitoes collected.  Numbers indicated mosquitoes collected per 

date traps were set and totals for each genus and species. 

 

  6/8 6/12 6/16 6/22  Total Collected 

Culex       53 

          quinquefasciatus  - 1 7 2  10 

          erraticus  13 - 1 23  37 

          salinarus  4 - - 1  5 

          nigripalpus  1 - - -  1 

Aedes       16 

          vexans  - 1 4 1  6 

          aegypti  - - 1 -  1 

          albopictus  1 3 - 4  8 

          triseriatus  1 - - -  1 

Anopheles quadrimaculatus  9 - - -  9 

Psorophora ferox  3 - 1 -  4 

Uranotaenia sappharina  1 - 2 -  3 

Coquilettidia peturbans  1 - - -  1 

 

Of the three representative taxa used for non-target bioassays, Ischnura spp. and P. longipennis 

were both present at the collection site year-round (Table 2) albeit in different abundances and 

life stages.  However, greater numbers of P. longipennis were collected as the weather became 

cooler, with three samples on November 5
th

 of 2011,  Feb. 6
th

, and March 5
th

 (average daily 

temperatures 55°F, 56°F, and 61°F, respectively) of 2012 yielding a total of 13 individuals (or 

4.3 specimens per date) as compared to 6 individuals from 4 collections (or 1.5 specimens per 

date) during warmer weather on May 19
th

 and 21
st
, June 27

th
 and July 18

th
 (average daily 

temperatures of 77°F, 79°F, 86°F, and 85°F) of 2012.  Numbers of Ischnura spp., in comparison, 

varied widely throughout the year, with as many as 6 individuals collected on one day (May 24
th

, 

2011), but none only 3 days later (May 27
th

).  Members of Caenis spp. were abundant (i.e., 13 

individuals) during the early to late spring months, but could not be found in November.  These 

mayflies began to reappear in low numbers beginning in March of the following year and 

reached substantial numbers in May.  Finally, whereas chironomids and the majority of  



Table 2: Survey of non-target taxa. 

                    2011            

2012 

 Total 

 Spring Fall Winter Spring Summer  

       

Coleoptera       

      Haliplidae-  

          Peltodytes spp. 2 1    3 

Scirtidae 7     7 

Dytiscidae (adult) 1     1 

Staphylinidae- Stenus sp. 1     1 

Hydrophilidae (larval) 4     4 

       

Odonata       

Coenagrionidae-       

          Ischnura spp. 14 7 3 8 6 38 

          Enellagma spp. 1     1 

Libellulidae-       

          Pachydiplax longipennis 9 4 9 2 4 28 

          Miathyria sp. (?) 1     1 

       

Diptera       

Chironomidae 14     14 

Stratiomyidae-       

          Odontomyia/Hedriodiscus 2     2 

       

Ephemeroptera       

Caenidae- Caenis spp. 13  1  15 29 

       

Hemiptera       

Mesoveliidae- Mesovelia spp. 2    1 3 

Gerridae- Limnoporus spp. 2  1   3 

Corixidae  2    2 

Nepidae    1  1 

* Numbers indicate the amount of individuals collected per season and year as well as totals per 

individual taxa.  Collection dates were, in 2011: May 24th, 27th, 30th, June 1st, ,3rd, 7th, 9th, 

22nd, November 5th, December 7th, and in 2012: February 6th, March 5th, May 19th, May 21st, 

June 27th, and July 18th. 

  

 

 



 coleopteran taxa were abundant in Spring of 2011, they were not found at the same time 

the following year. 

Susceptibility of Culex quinquefasciatus to Spinosad 

 Based on overlap of confidence intervals, the susceptibility to spinosad did not differ 

between the laboratory reference strain (Sebring-S) and field collected mosquitoes (Fig. 5).  Log 

dosage/probit relationships were linear and the LC50 values (and 95% confidence intervals) were 

0.028 ppm (0.022-0.034) and 0.031 (0.02-0.047) ppm for the Sebring-S and field-collected 

mosquitoes, respectively. 

Susceptibility to Spinosad in Non-target Organisms 

 Whereas susceptibility to spinosad in the non-target organisms varied depending on the 

species and concentration (Fig. 6), mortality was highest for Caenis spp. at 71% and 99%  at 

concentrations corresponding to the LC50 for field-collected mosquitoes (0.031 ppm) and the 

field labeled rate (1.6 ppm), respectively.  In tests with odonate species, there was no mortality 

among Ischnura spp. and only 6% mortality among P. longipennis at the mosquito LC50.  

Mortality was higher at the field rate; 86% for Ischnura spp. but only 47% for P. longipennis. 

 

 



Fig. 5: Susceptibility to Spinosad in Sebring-S and Field-Collected C. quinquefasciatus.  

Sebring-S and Field-Collected populations are represented by open and closed circles, 

respectively. 

 

 

 

 

 



  

Fig. 6: Susceptibility of non-target organisms to spinosad.  Percent mortalities for 0.031 ppm and 

1.6 ppm are indicated by light and dark bars, respectively.



24 

DISCUSSION 

 Members of the genus Culex were the most abundant mosquitoes found at the study site, 

and C. erraticus was the most abundant species.  However, C. quinquefasciatus was studied 

further because it is present throughout the year in the southeastern U.S., as opposed to C. 

erraticus, which is more prominent during the summer.  More importantly, C. quinquefasciatus 

is a major pest species capable of transmitting a number of debilitating diseases, including urban 

and lymphatic filariasis and West Nile.  As such, it is currently the target of major control efforts 

in urban areas, some of which include the use of spinosad.  Ten other mosquito species were 

found at the study site; however, many of these mosquitoes, such as Ae. vexans, Ae. albopictus 

and C. salinarius, have life histories that make it unlikely that the captured adults originated 

from the survey site.  For example, Ae. vexans is a floodwater mosquito, while Ae. albopictus 

primarily breeds in containers, and C. salinarius prefer habitats with large amounts of rotting 

plant matter (Crans, 2004).  These conditions were not present at the study site.  Finally, a single 

specimen of Ae. aegypti was captured.  It is worth noting that at the time of capture, this 

particular species was not known to have a locally established population within the Baton 

Rouge area (R. Vaeth, personal communication, 2011). 

 Susceptibility to spinosad, as measured in the current study, is similar to that reported 

previously in other studies of C. quinquefasciatus and other species of mosquitoes.  Using 

similar methods but different instars (i.e., 2nd and 4th), formulations of spinosad (i.e., technical 

or suspension concentrate), and incubation period (48 hours), Hertlein et al. (2010) reported a 

range of LC50 values for C. quinquefasciatus (0.012-0.065 ppm) that is similar to values reported 

here.  In addition, in previous studies, susceptibility to spinosad appears variable among different 

species of mosquitoes.  In tests using technical spinosad, LC50 values were similar for C. 



quinquefasciatus and Ae. aegypti (0.065 ppm) but higher for Ae. albopictus (0.3 ppm) and lower 

for An. gambiae (0.01 ppm).  Finally, in the current study, no significant difference was observed 

in susceptibility between lab-reared and field-collected mosquitoes.  The LC50 ranges reported by 

Hertlein et al. (2010) for field-collected C. quinquefasciatus (0.014 ppm - 0.023 ppm) are similar 

to those measured in laboratory strains.  However, direct comparisons of susceptibility to 

spinosad between reference susceptible and wild populations of C. quinquefasciatus have not 

been reported until now.  Thus, the demonstration in the current study of the susceptibility of 

field populations is valuable, and reinforces the utility of spinosad as a viable part of mosquito 

control programs, especially in light of resistance to other insecticides in wild populations of C. 

quinquefasciatus.  For example, resistance to permethrin (up to 1,400-fold) in the U.S. and 

elsewhere has been observed in C. quinquefasciatus (Chandre et al., 1998; Liu et al., 2009), as 

has resistance to deltamethrin, malathion, chloropyrifos, fipronyl and imidacloprid (Liu et al., 

2004; 2009). 

 Effects of non-target exposure to spinosad have been examined in a number of species.  

Spinosad is slightly to moderately toxic to fish with LC50's ranging from 5 ppm (for carp) to 30 

ppm (for rainbow trout).  In addition, spinosad is slightly toxic to aquatic invertebrates, with 

LC50's ranging from 9.76 ppm (for grass shrimp, Palaemonetes pugio) to 92.7 ppm (for water 

flea, Daphnia magna) (Dow Agrosciences, 2002).  In the current study, susceptibility to spinosad 

differed amongst the non-target taxa.  Caenis spp. was the most susceptible although 

susceptibility was comparable to that observed in field-collected mosquitoes.  Odonates were 

shown to be less susceptible, with negligible mortality measured at the lower dosage, (0 and 6% 

for Ischnura spp., and P. longipennis, respectively).  At the field-rate, however, mortality for 

Ischnura spp. was very high (86%), but lower (47%) for P. longipennis.  These differences in 



susceptibility may be due to weight, which was 10-fold lower for Caenis spp. relative to 

Ischnura spp., and 10-fold lower for Ischnura spp. compared with P. longipennis. 

 A number of questions have arisen from this study.  Many relate to examining non-target 

effects of spinosad in a more comprehensive manner.  For instance, susceptibility to spinosad 

could differ depending on life stages.  The three non-target taxa that were tested are aquatic as 

immatures, but are all terrestrial as adults.  In comparison, other insects (such as dytiscids) are 

present in the same environment as both larvae and adults, and have very different life histories 

(and possibly, differing susceptibilities).  In addition, susceptibility of non-target taxa to spinosad 

under different environmental conditions, such as water temperature, pH, salinity and organic 

content, need to be studied, as these factors can alter the distribution and efficacy of spinosad.  

Finally, an increased number of sampling techniques would allow for a more accurate 

assessment of the occurrence of non-target fauna. 

 In summary, bioassays show that there is no significant difference in susceptibility to 

spinosad between mosquitoes from local, field-collected populations and a lab-reared susceptible 

reference strain of C. quinquefasciatus.  This suggests a high degree of susceptibility in field 

populations.  In addition, non-targets species were also susceptible to spinosad.  Mortality among 

three representative species was variable and depended on dosage and species. A more 

comprehensive study of the effects of spinosad on non-target organisms is needed. 

 This study may allow for development of improved pest management strategies with 

spinosad.  First of all, it provides an example of methods and materials that can be used to test 

aquatic non-targets, which can serve as a basis for future studies.  Second, the great difference 

(several orders of magnitude) between the labeled field rate and the LC50's for the wild 



populations and Sebring-S strain of C. quinquefasciatus, suggests that the application rate may 

be higher than what is actually necessary to manage populations of mosquito larvae.  Reduced 

application rates of spinsoad may be adequate to control C. quinquefasciatus larvae while 

minimizing effects on non-target taxa.
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